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genomes (1.7 and 2.0 cM, respectively). Seven subpopula-
tions were identified with population structure analysis. A 
stable QTL was detected for grain yield on chromosome 
2DS both under irrigated and rain-fed conditions. A multi-
trait region significant for yield and yield components was 
found on chromosome 5B. Grain yield QTL on chromo-
some 1BS co-localized with harvest index QTL. Vegetation 
indices shared QTL with harvest index on chromosome 
1AL and 5A. After validation in relevant genetic back-
grounds and environments, QTL detected in this study for 
yield, yield components and drought tolerance-related traits 
may be used in marker-assisted selection in wheat breeding 
programs.

Introduction

Wheat is the world’s third most important food crop next 
to maize (Zea mays L.) and rice (Oryza sativa L.) (Green 
et al. 2012). It accounts for 19 % of total production among 
major cereal crops and provides 55  % of the carbohy-
drate consumed by humans around the world (Gupta et al. 
1999; Bagge et al. 2007). However, its productivity is often 
reduced by both biotic and abiotic stresses and its potential 
yield is rarely achieved.

Plant breeding has successfully improved crop resist-
ance to both biotic and abiotic stresses, including drought, 
through phenotypic selection (Araus et  al. 2008; Cooper 
et al. 2009). However, the progress is slow, and there is a 
large yield gap between drought prone areas and ideal pro-
duction regions for most crops, including wheat. Many 
previous studies have shown that tolerance to drought is a 
complex quantitative trait that involves multiple chromo-
some regions (Barnabas et  al. 2008; Fleury et  al. 2010; 
Pinto et  al. 2010; Ravi et  al. 2011; Mir et  al. 2012). It is 
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further complicated by the fact that the degree of drought 
effects on plants depends on timing, duration and intensity 
of drought, and different traits may be required for different 
patterns of drought (Passioura 2012).

Genetic improvement under drought requires identify-
ing sources of traits associated with drought tolerance and 
introgressing the genes underlying the target traits to locally 
adapted cultivars. The challenge for implementing this strat-
egy in breeding programs is the identification of the most 
suitable target traits in a time-efficient and cost-effective 
way for different drought scenarios (Passioura 2012). Recent 
advancements in high throughput genotyping and phenotyp-
ing have improved understanding of the physiological and 
molecular bases underlying complex traits including drought 
tolerance (Collins et al. 2008; Habash et al. 2009; Mir et al. 
2012; Sinclair 2012). QTL mapping is a key approach for 
understanding the genetic architecture of complex traits in 
plants (Holland 2007). However, QTL mapping using bi-
parental populations explains only a small portion of the 
genetic architecture of a trait because only two alleles per 
locus can be evaluated at a time. Other limitations of bi-
parental populations are low mapping resolution, population 
specificity of detected QTL, and the long time required to 
develop mapping populations. These limitations have partly 
contributed to the slow transfer of knowledge from bi-paren-
tal QTL studies to practical applications in plant breeding.

The advent of the association mapping approach has over-
come some of the limitations of bi-parental mapping popula-
tions. Since association mapping utilizes diverse germplasm, 
QTL for many traits can be detected with high resolution 
in a single study, making the method more efficient and 
less expensive than bi-parental QTL mapping (Breseghello 
and Sorrells 2006; Ersoz et al. 2009; Sorrells and Yu 2009; 
Waugh et al. 2009). The resolution and power of association 
studies, however, depend on the extent of linkage disequilib-
rium (LD) across the genome. LD needs to be determined in 
each study as it is affected by several factors such as popula-
tion history, recombination frequency and mating system.

The correlation of allele frequency (r2) among the mark-
ers is the common statistic used to measure LD (Gupta 
et  al. 2005; Sorrells and Yu 2009). LD is expected to 
decay as a function of the nucleotide or linkage distance, 
as recombination reduces LD. This guides decisions on the 
number of markers required to conduct association map-
ping in a crop species (Waugh et  al. 2009). To visualize 
LD patterns and the rate of LD decay for a chromosome, 
r2 values are usually plotted against nucleotide or linkage 
distance (Abdurakhmonov and Abdukarimov 2008).

Previous studies have demonstrated unique LD pat-
terns for different crop species and populations within a 
species, with rapid levels of LD decay observed in cross-
pollinated species (e.g., maize) compared to self-pollinated 
species (e.g., wheat) (Wilson et al. 2004; Chao et al. 2007; 

Comadran et al. 2009). Although association mapping has 
advantages over bi-parental populations, QTL identification 
could be confounded by population subgroups and plant 
phenology. Another limitation is that markers with low 
allele frequencies are often not considered in association 
analysis. However, statistical models have been developed 
to account for population structure and familial relationship 
among the genotypes in the mapping panel (Yu et al. 2006).

Association mapping has been used successfully to 
detect QTL in wheat for disease resistance (Crossa et  al. 
2007; Maccaferri et  al. 2010; Yu et  al. 2011, 2012; Adhi-
kari et  al. 2012; Kollers et  al. 2013a, b), end-use quality 
traits (Breseghello and Sorrells 2006; Zheng et  al. 2009), 
Russian wheat aphid (Diuraphis noxia) resistance (Peng 
et  al. 2009), and yield and yield component traits (Mac-
caferri et  al. 2011; Neumann et  al. 2011). The suitability 
of diversity array technology (DArT) markers for associa-
tion studies has been proved particularly for species lack-
ing cost-effective single-nucleotide polymorphism (SNP) 
markers (Benson et al. 2012). However, the majority of pre-
vious studies have been conducted either with low marker 
density or a small number of lines in the mapping popu-
lation. Therefore, the objectives of the present study were 
to (1) determine LD decay rate in a spring wheat associa-
tion mapping panel, (2) analyze population structure in 
the panel, and (3) identify markers associated with yield 
and yield components, morphological, phenological and 
drought tolerance-related traits.

Materials and methods

Mapping population

The spring wheat association mapping panel used in this 
study wheat association mapping II (WAMII) was origi-
nally developed by the International Maize and Wheat 
Improvement Center (CIMMYT) with the intention of 
identifying QTL/genes for drought and heat tolerance. The 
panel comprised a total of 287 diverse lines which were 
assembled from the Elite Spring Wheat Yield Trial (26th, 
27th and 28th ESWYT), Semiarid Wheat Yield Trial (1st–
16th SAWYT) and High Temperature Wheat Yield Trial 
(HTWYT) (Lopes et al. 2012). Many synthetic hexaploid-
derived wheat lines were included in the panel (Lopes and 
Reynolds 2012). In the study reported here, from 283 to 
294 lines were evaluated depending on the location and 
year due to limitations in seed quantity.

Experimental design and phenotypic trait evaluation

In 2010, association mapping panel (including two local 
check cultivars, Reeder and Butte 86 (Mergoum et  al. 
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2006)) was evaluated under fully irrigated conditions at the 
USDA-Agricultural Research Service Limited Irrigation 
Research Farm in Greeley, CO, USA (latitude 40° 27′N; 
longitude 104° 38′W; elevation 1,427  m). The soil at the 
site is well drained with fine sandy loam to clay loam tex-
ture and a pH range of 7.4–8.4. The meteorological data 
with amount of water supplemented by irrigation are sum-
marized in Table 1 for all environments.

In 2011, we evaluated the mapping panel [including 
two local checks, SD3870, a breeding line form South 
Dakota and Granger (Glover et  al. 2006)] at Greeley 
under both fully irrigated and rain-fed conditions. The 
irrigated treatment was supplemented three times with 
drip irrigation, (twice before flowering and once during 
the grain filling stage), while the rain-fed treatment was 
irrigated only once at flowering to avoid complete failure 
of the experiment.

In the 2010 and 2011 experiments at Greeley, the lines 
were planted in four-row plots 1.52  m wide and 0.92  m 
long with 0.20 m spacing between rows and a seeding rate 
of approximately 173 seeds  m−2. Each entry was repli-
cated twice in a Latinized incomplete row–column design 
with CycDesign 3.0 software (www.cycdesign.co.nz). The 
experimental field was maintained free of weeds by man-
ually removing weeds as required. In both seasons, the 
plants experienced heat stress mainly from heading through 
physiological maturity, as maximum temperatures were 
over 30 °C for a total of 13 days in June and 22 days in July 
2010; temperatures exceeded 30 °C for 15 days in June and 
27 days in July 2011.

The association mapping panel was planted at the 
Melkassa Agricultural Research Center of the Ethiopian 
Institute of Agricultural Research, Melkassa, Ethiopia (lati-
tude 8° 24′N; longitude 39° 21′E, elevation 1,550  m), on 
wet soil from rain in the previous few days for non-stressed 
treatment. The same set of lines was planted on drier soil 
for stressed treatment. The dominant soil type at Melkassa 
is sandy loam (Andosol of volcanic origin) with pH ranging 
from 7.0 to 8.2. The experiment was laid out as an alpha-
lattice design with 14 entries per incomplete block and two 
replications. A two-row plot of length 2.5 m, width 0.4 m 
and between row spacing of 0.20 m was used. Seeding rate 

was based on the local recommendation of 150  kg  ha−1. 
Nitrogen fertilizer was applied in split doses at planting and 
tillering at a rate of 50 kg ha−1 for each dose. Phosphorus 
fertilizer was applied as diammonium phosphate at plant-
ing at the rate of 100 kg ha−1. The temperature was below 
30 °C for all days from emergence time through physiolog-
ical maturity.

The phenotypic traits evaluated in this study are defined 
as follows. Plant height was recorded as the average of 
three values for each plot measured in centimeter from the 
soil surface to the tip of the spike excluding awns. Days to 
heading were recorded as the number of days from plant-
ing until 50  % of the spikes in each plot had completely 
emerged above the flag leaves. Days to maturity were 
recorded as the number of days from planting until 50 % 
of the peduncles in each plot had turned yellow. Grain fill-
ing duration was calculated as the difference between the 
days to heading and days to maturity. Normalized veg-
etation index (NDVI) was obtained by scanning plants 
in each plot at the grain filling stage with a GreenSeeker 
instrument model 3541 (NTech Industries Inc., Boulder, 
CO). Green leaf area was obtained from a photo taken at 
a height of approximately 0.5  m directly above each plot 
with a digital camera (Coolpix S8100, Nikon Corp., Japan) 
during vegetative stage, and pictures were processed with 
Breedpix software (Casadesus et  al. 2007). Leaf senes-
cence was scored on a scale from 0 to 10, where 0 indicates 
completely green leaves and 10 indicates that all leaves in 
a plot had changed completely to yellow. Flag leaf length 
(measured from the leaf collar to the tip) and width (meas-
ured at the widest part of the flag leaf) were recorded as 
the average measurement of three flag leaves per plot. Flag 
leaf area (cm2) was calculated as flag leaf length × flag leaf 
width × 0.75.

Single-kernel diameter (mm), kernel hardness and sin-
gle-kernel weight (mg) were determined from 100 seeds 
(sampled from grain of the biomass sample) in a single-
kernel characterization system instrument Model 4100 
(Perten Instruments, Springfield, IL). Spike length, spike-
let number per spike, kernel number and weight (g) per 
spike, and kernel number per spikelet were recorded as the 
average of five spikes per plot. Thousand-kernel weight 

Table 1   Meteorological data including total rainfall, average maximum and average minimum temperature (avg max/avg min), and total 
amount of water supplied by irrigation during growing seasons of spring wheat association mapping panel (WAMII) in 2010 and 2011

Country Environment Lines evaluated Planting date Total rainfall (mm) Irrigation (mm) Avg max/avg min (°C)

USA GRW10 285 April 5 271 93.8 16.94/0.22

GRW11 288 April 15 173 140 17.6/0.83

GRD11 288 April 15 173 19 17.6/0.83

Ethiopia MLKW11 294 July 17 533 0 27.3/8.5

MLKD11 294 July 19 533 0 27.3/8.5

http://www.cycdesign.co.nz
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was determined by extrapolation after counting seeds of 
five spikes with a seed counter (International Market-
ing and Design Corp Model 900-2; San Antonio, TX) and 
obtaining the weight of the seeds. Number of spikes m−2 
was calculated by dividing the number of kernels m−2 by 
kernel number per spike. The number of kernels m−2 was 
obtained from the ratio of grain weight m−2 to thousand-
kernel weight, multiplied by 1,000. Biomass weights were 
obtained by cutting all the plants at ground level in one row 
of each plot at maturity, then weighing samples after 48 h 
in a 40  °C drier. These samples were threshed to obtain 
grain weight, and harvest index was recorded as the ratio 
of grain weight to oven-dried biomass. Grain yield was the 
total weight of seed yield in each plot divided by the plot 
area and expressed as kg ha−1.

Test weight (kg  hL−1) was determined using standard 
procedures from a small sample of the grain collected at 
harvest. Drought susceptibility index (DSI) was calculated 
using grain yield and kernel number per square meter under 
irrigated and rain-fed conditions as described by Fisher and 
Maurer (1978). DSI = (1−Yd/Yi)/DII, where Yd = yield of 
each line in the dry treatment, Yi = yield of each line under 
fully irrigated conditions and DII  =  1−(Ydm/Yim) where 
Ydm is the average yield of the dry treatment and Yim is the 
average yield of the irrigated treatment.

Phenotypic data analysis

The phenotypic data analyses were conducted with SAS 
v. 9.3 software (SAS Institute Inc., Cary, NC). First, 
the general linear model (GLM) procedure was used to 
obtain best linear unbiased estimates, considering geno-
type, replications, rows and columns as fixed in the 
model for each environment. Normality of the data for 
each trait was checked using a Q–Q plot of residuals in 
the SAS GLIMMIX procedure. The presence of statisti-
cally significant differences among the genotypes for 
each trait was also checked with the GLM procedure. 
Then, best linear unbiased predictions (BLUPs) and 
variance components were obtained for all traits using 
a Mixed model procedure, considering all factors in the 
model as random. Environment was considered fixed in 
the combined data analysis. To account for spatial vari-
ations in the experimental field, four spatial variability 
adjustment models (spatial power, anisotropic spatial 
power, Matérn spatial and autoregressive) were tested for 
each trait. The correlation values due to spatial variabil-
ity in each model were found to be very low for all data 
sets except for Greeley in 2010. Thus, the autoregressive 
spatial adjustment model was applied for the data set 
in 2010, but no adjustment was made for the remaining 
environments.

Genotypic data analysis

Diversity array technology marker genotypes were 
obtained following the procedures of Akbari et  al. (2006) 
at Triticarte Pty. Ltd. (Canberra, Australia; http://www.tr
iticarte.com.au), a whole-genome profiling service labo-
ratory. A total of 1,863 DArT markers were used in the 
analyses, after markers with <5  % allele frequency and 
those with a high percentage of missing data points (>6 %) 
were removed. Genome-wise distribution of the mark-
ers was 558 on genome A, 617 on genome B, and 290 on 
genome D (http://www.triticarte.com.au). Chromosome 
map positions were not known for 398 markers. A DArT 
marker physical map (based on Chinese spring wheat dele-
tion lines) (http://www.cerealdb.uk.net/) was used to assign 
trait-associated markers to chromosome arms.

Population structure and linkage disequilibrium analyses

Seventy-eight markers (3–4 markers spaced >10  cM per 
chromosome) were selected from all chromosomes (except 
for chromosome 4D and 5D) from a total of 1,863 mark-
ers for analysis of population structure. To determine 
population structure, an admixture model with correlated 
allele frequency in STRUCTURE software was applied 
(Pritchard et al. 2000). A burn-in of 20, 000 iterations fol-
lowed by 20,000 Monte Carlo Markov Chain (MCMC) 
replicates was conducted to test k values (number of sub-
populations) in the range of 3–12. Each k was replicated 
five times and the run that assigned the most lines with 
probability >0.5 in all clusters was used. The likely num-
ber of subpopulations was determined using the approach 
of Evanno et  al. (2005) and the likelihood distribution of 
k was examined. Genetic distance-based cluster analy-
sis was conducted using hclust script for Ward method in 
the R package (www.cran.r-project.org) using the same 78 
markers to compare results with STRUCTURE software 
output. Multiple regression analysis was also done for all 
phenotypic traits using population subgroups in the model 
to determine the extent of the confounding effect of popu-
lation structure on the phenotypic traits.

LD among markers was calculated using observed ver-
sus expected allele frequencies of the markers in TASSEL 
v.3.0 (Bradbury et  al. 2007). Only mapped markers were 
used for LD calculation both for the panel and for model-
based subgroups. The critical r2 value beyond which LD 
is due to true physical linkage was determined by taking 
the 95th percentile of the square root transformed r2 data 
of unlinked markers (Breseghello and Sorrells 2006). The 
percentage of marker pairs significant at different critical 
r2 values (0.2 and 0.2641) and P < 0.001 was determined 
for each chromosome to compare the degree of LD among 

http://www.triticarte.com.au
http://www.triticarte.com.au
http://www.triticarte.com.au
http://www.cerealdb.uk.net/
http://www.cran.r-project.org
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chromosomes. Locally weighted polynomial regression 
(LOESS)-based curves were fitted on scatter plots of r2 ver-
sus distance among markers. LOESS is a non-parametric 
method of estimating local regression surfaces, and it is a 
robust fitting method particularly when there are outliers 
in the data (Cleveland 1979). The LOESS model is writ-
ten as yi  =  g(xi)  +  εi, where yi is ith measurement for a 
response variable y, xi is the corresponding measurement 
of a predictor variable x, εi is a random error and g is the 
regression function. Analysis of molecular variance was 
conducted using the seven groups with Arlequin software 
(http://cmpg.unibe.ch/software/arlequin3).

Marker–trait association (MTA) analysis

A total of 1,863 high-quality DArT markers were used in 
this study. The GAPIT program in R software (Lipka et al. 
2012) was applied to determine the association between 
markers and phenotypic traits. MTA analysis was con-
ducted for each environment separately, using BLUPs for 
each trait and line. A mixed linear model was employed by 
including BLUPs, marker, kinship matrix (K) and probabil-
ity of membership of each line (Q) in the model for each 
trait (Yu et al. 2006). Kinship matrix and principal compo-
nent analyses were conducted in TASSEL software.

Model comparison was made for K (kinship) only, 
Q  +  K (population structure and kinship) and P  +  K 
(principal component and kinship) models. Mean square 
of the difference (MSD), based on observed P values and 
expected P values, and Q–Q plot were used to compare 
the models; MTA P values for yield of five environments 
plus the combined data set were used for the model com-
parisons. Among the three mixed models, the model taking 
into account population structure and genotype relation-
ship showed the least deviation from the nominal alpha 
level in most cases. The same procedures were followed to 
compare mixed model versus GLM model, and the former 
was found better in controlling false positives. For multi-
ple comparison adjustment, false discovery rate (FDR)-
adjusted P values were calculated for each trait (Benja-
mini and Hochberg 1995). However, many markers within 
10 cM distance are in LD, and FDR adjustment is still too 
stringent as it assumes independent testing. The propor-
tion of cross-validated phenotypic variations explained 
by marker–trait associations that survived FDR adjust-
ment were calculated using cvGWAS R package through 
fivefold cross-validation procedures as outlined by Shen 
(2013). The mapping panel was split into a training data 
set comprising 80 % of the samples and a validation data 
set consisted 20 % of the panel to fit a linear regression of 
the phenotype on the genotype for each marker in the train-
ing set, and then predict phenotypic values in the validation 
sets using an estimated model from the training set. The 

mean of the squared correlation coefficients (R2) between 
observed phenotypic measurements and their predicted val-
ues in each of the five validation sets was taken as an esti-
mate of the proportion of phenotypic variance explained by 
the marker.

Results

Wide differences among the study materials were visu-
ally observed for many traits during field evaluations. 
Water deficit reduced full expression of those traits in rain-
fed treatments despite increase of expression for some 
drought-related traits (e.g., leaf waxiness). The rain-fed 
treatments at Melkassa experienced water deficit only at 
emergence stage, whereas at Greeley the rain-fed treatment 
was exposed to water deficit starting from vegetative stage 
through grain filling. Data were collected for a total of 26 
traits, but this number varied depending on the year and 
location.

Agronomic trait means

Analysis of variance showed significant differences 
(P < 0.05) among genotypes for most traits in all environ-
ments and for the combined data analysis across environ-
ments. The mean grain yield of individual lines in the five 
environments were ranged from 1,087  kg/ha (recorded at 
Greeley in 2011 under rain-fed conditions) to 5,377 kg/ha 
(obtained at Melkassa under non-stressed conditions). The 
mean grain yield (2,156  kg/ha) recorded under fully irri-
gated conditions in 2010 was the highest of the three trials 
grown in Greeley (Online Resource 1). The vegetative stage 
of the lines (calculated as the number of days from planting 
to heading) was longer in the Greeley environments (mean 
of 68  days) than in the Melkassa environments (mean of 
55  days). However, the grain filling duration at Melkassa 
was longer than that of the Greeley environments (39 vs. 
34 days). On average, the genotypes headed 13 days earlier 
at Melkassa than at Greeley. Heading date ranged from 47 
to 69  days at Melkassa and from 63 to 72  days at Gree-
ley (Online Resource 1; Online Resource 2). In Melkassa 
environments plants grew taller than in the Greeley 
environments.

Model‑based population structure and linkage 
disequilibrium

Population structure analysis of 287 spring wheat lines 
conducted with the STRUCTURE program indicated that 
the likely number of subpopulations was seven based on 
change of k. Of these, subpopulations II, IV, V and VI 
were dominated by the lines with Kauz, Pastor, TUI and 

http://cmpg.unibe.ch/software/arlequin3
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WBLL1 background, respectively (Fig. 1). Lines with dif-
ferent backgrounds were grouped together for subpopula-
tions I, III and VII. Genetic distance-based cluster analysis 
also provided evidence for the presence of subpopulations 
despite the lack of similarity between its clusters and the 
subgroups of model-based analysis in STRUCTURE. 
Molecular variance analysis for the seven model-based 
populations indicated that 78.5 % of the total variation is 
explained by within-population variation, whereas 21.5 % 
of the variation is due to among-population variation (data 
not shown). Population differentiation (Fst) values ranged 
from 0.14 to 0.73 and were highly significant (P < 0.0001) 
for all pairs, supporting the presence of population 
structure.

Linkage disequilibrium among markers was calculated 
for all chromosomes (except chromosomes 4D and 5D that 
were represented by only a single marker each). A critical 
value of r2 > 0.264 was determined to be the appropriate 
threshold for LD due to physical linkage. Chromosomes 
4A (62 %) and 1B (55 %) showed a higher percentage of 
significant (P  <  0.01) marker pairs in LD whereas chro-
mosomes 5A (20  %), 2B (23  %) and 7A (23  %) had the 
least number of significant (P < 0.01) marker pairs (Online 
Resource 3). The percentage of marker pairs due to physi-
cal linkage was high for chromosome 3D (24 %), followed 
by chromosomes 2D (17 %) and 1B (16 %). The percent-
age of LD due to physical linkage mimics the percentage 
of LD at r2 > 0.2 for all chromosomes, but had no similarity 

Fig. 1   Population structure for 287 entries in a spring wheat association mapping panel based on 78 DArT markers
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with that of LD at P < 0.01. Marker pairs at r2 > 0.2 and 
r2 > 0.264 were significant at P < 0.001 for all 19 chromo-
somes considered in this study.

Linkage disequilibrium decay rate evaluation was con-
ducted at the genome and individual chromosome level. 
The genome level LD decayed below r2  =  0.2 at about 
1.7  cM for the A genome (Fig.  2), while the smoothing 
curve crossed the r2  =  0.2 line at approximately 2  cM 
for the B genome (Fig.  3). For the D genome, the curve 
crossed the r2  =  0.2 line near 6.8  cM genetic distance 
(Fig.  4). For all 19 chromosomes, the LD decay curve 
crossed the r2 =  0.2 line at about 3.4  cM. We were able 
to determine the genetic distance at the baseline r2 = 0.2 
for four out of the seven model-based subgroups for all 
chromosomes together; LD decayed below r2 = 0.2 within 
8–9 cM for three of them and within 6 cM for the fourth 
subpopulation.

Multiple regression analysis with population struc-
ture in the model showed that plant height (29.5  %) was 
the most affected by the genotype groupings, followed by 
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Fig. 2   Linkage disequilibrium (r2) plot of all chromosomes of the A 
genome in 287 lines of a spring wheat association mapping panel

Genetic distance (cM)

0 20 40 60 80 100 120 140 160 180

r2

0.0

0.2

0.4

0.6

0.8

1.0

Fig. 3   Linkage disequilibrium (r2) plot of all chromosomes of the B 
genome in 287 lines of a spring wheat association mapping panel
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Fig. 4   Linkage disequilibrium (r2) plot of all chromosomes on the D 
genome in 287 lines of spring wheat association mapping panel

Table 2   Percent of phenotypic variation explained (R2) by popula-
tion structure based on combined data across environments

NDVI normalized difference vegetation index
a  The number of environments used in combined data analysis
b  Significance threshold P value is 0.05

Trait Environmentsa R2 (%) P valueb

Grain yield 5 7.4 0.0015

Thousand-kernel weight 5 21.0 0.0001

Harvest index 5 2.2 0.3950

Kernel number 5 3.5 0.1182

Spikelet number 3 13.0 0.0001

Kernel weight per spike 3 5.3 0.020

Test weight 3 5.0 0.0212

Days to heading 5 4.7 0.0362

Days to maturity 5 3.0 0.1970

Grain filling duration 5 9.1 0.0001

Flag leaf area 5 13.2 0.0001

Kernel hardness 3 1.9 0.506

Single-kernel weight 3 25.9 0.0001

Kernel number per spikelet 3 9.0 0.0002

Spike number per square meter 3 5.6 0.014

Single-kernel diameter 3 20.5 0.0001

Kernel number per spike 3 15.7 0.0001

Flag leaf length 5 11.4 0.0001

Flag leaf width 5 9.4 0.0001

Plant height 4 29.5 0.0001

Biomass 5 12.4 0.0001

NDVI 3 18.9 0.0001

Green leaf area 5 14.4 0.0001
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single-kernel weight (25.9  %), thousand-kernel weight 
(21.0  %), single-kernel diameter (20.5  %) and NDVI 
(18.9  %) (Table  2). On the other hand, the variations 
explained due to population structure were non-significant 
for kernel number per square meter, drought susceptibility 
index, kernel hardness, harvest index and days to maturity. 
Moreover, population structure explained only about 5 % of 
the total variation in days to heading, test weight and kernel 
weight per spike. The variation explained due to population 
structure in grain yield (7.5 %) was also low.

Marker–trait associations

Although several MTA were detected at P  <  0.05 for all 
traits, we are reporting only strong MTA (P  <  0.001) 
for single environments and moderate MTA significant 
(P  <  0.01) in at least half of the test environments. Con-
sistency across environments was used as an additional cri-
terion for MTA significant at P  <  0.01 to reduce the risk 
of including false marker–trait associations. A summary of 
MTA in different environments for each phenotypic trait is 
given in Table 3.

Considering both criteria together (P  <  0.001 and 
P  <  0.01 in half or more of the environments), a total of 
565 MTA were detected in one or more environments for 
26 measured or calculated phenotypic traits in five envi-
ronments plus combined data across environments. Out 
of these, about 20 % of the MTA were detected only in a 
single environment and the remaining 80  % showed up 
in two or more environments. A total of 130 (22.9  %) of 
MTA involved unmapped markers. The numbers of MTA 
detected for grain yield both under irrigated treatment 
and rain-fed treatment at Greely were similar, while at 
Melkassa the number of MTAs detected for grain yield 
under the stressed treatment was lower than that detected 
under non-stressed treatment for grain yield (Table 3). The 
highest number of MTA was recorded for kernel hardness 
(113) followed by test weight (44) and flag leaf length (39) 
while the fewest MTA were obtained for drought suscepti-
bility index, flag leaf senescence, kernel number per spike-
let, kernel number per spike and spikelet number per spike. 
Moreover, kernel hardness had the largest number of stable 
MTA (15) followed by test weight (9). Chromosome-wise, 
the highest number of MTA was detected on chromosomes 
5B, 3B, 7A and 1B, while chromosomes 1A, 2A, 2D, 3A 
and 5A harbored the fewest MTA in this study. No MTAs 
were detected for chromosomes 4D and 6D.

Grain yield MTAs were detected on chromosomes 1BS, 
2DS, 5B (73 and 76.4  cM) and 7B. Unmapped marker 
wpt0419 was also associated with grain yield at Melkassa 
under irrigated conditions. The marker wpt6531 on chromo-
some 2DS was associated with yield in four out of six envi-
ronments, including both irrigated and rain-fed conditions, 

and can be considered as a stable marker for grain yield. 
However, wpt3457 (5B) showed the strongest association 
with yield under rain-fed conditions at Greeley in 2011 
(Online Resource 4). Stable MTA were also detected for 
the major yield component traits kernel number per square 
meter on chromosome 7AS and harvest index on chro-
mosomes 5AL, 5B (72.4  cM) and wpt0286 (unmapped). 
Regions of chromosomes 1BL, 3BS, 4A, 5B (72.4  cM) 
and 5BL were consistently associated with thousand-ker-
nel weight. Regions of chromosome 4B, 5B, 6B, 7AS and 
7AL were associated with spike number per square meter 
at two environments. However, all MTA obtained for final 
biomass on chromosomes 1AS, 5B (72.4  cM), 7BL, 7D, 
7DL and 7DS were environment specific (Online Resource 
5). Similarly, all MTA detected for number of spikelets per 
spike (2B and 7B), kernel number per spikelet (1DL, 7A 
and 7BL) and kernel number per spike (1AS, 3BS and 7A) 
were detected only in single environments despite the pres-
ence of very strong associations for some MTA (Online 
Resource 4).

Single-kernel traits such as single-kernel weight and 
diameter and kernel hardness had more stable MTA than 
most of the yield component traits. The MTAs for single-
kernel weight were distributed on chromosomes 1BL, 1D, 
4A, 2AL, 4BL and 5BL while MTAs of single-kernel diam-
eter were detected on chromosomes 1BL, 2D, 3AS, 3B, 
3D, 4AL, 6BS, 7BL and 7DL. Several MTA were obtained 
for kernel hardness and the most stable ones (those detected 
in all environments) were found on chromosomes 1BL, 1D, 
3AS, 3D, 4AL and 7A. Similarly, many stable MTA were 
obtained for test weight, with chromosomes 2DL, 3BS, 4A, 
4BL and 7BL comprising the location of MTA detected in 
three out of the total four environments.

The most stable MTA for days to heading was detected 
on chromosome 1DS (four out of six environments), fol-
lowed by MTA residing on chromosomes 2B, 3AL, 3B and 
4AL (three out of six environments each). The most signifi-
cant MTA (P < 0.001) was detected on chromosome 2AL 
for marker wpt9277 at GRW10. This same marker was 
consistently associated with days to maturity. Grain filling 
duration had stable MTA on chromosomes 1BL, 3BS and 
7AL (each showing up in three of six environments).

Marker–trait associations were found for plant height 
on chromosomes 3BL, 5BS, 6AS, 7AS and 7BL, of which 
the MTAs on chromosomes 6AS and 7BL were the most 
consistent. QTL regions for flag leaf length were noted on 
chromosomes 1BS, 1BL, 2BL, 3BL, 3AL and 5B. Most 
of these associations were consistent, particularly marker 
wpt5072 on chromosome 3BL which was detected in five 
out of six environments. For flag leaf width, however, only 
wpt667461 (unmapped) was consistently associated with 
the trait despite the presence of flag leaf width-associated 
markers on chromosomes 2DL, 3BL, 5BS, 6A and 7AS. 
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Both stable and environment-specific MTAs were detected 
for flag leaf area; the chromosomes 3BL and 5BL harbored 
stable QTL for this trait. Unmapped markers wpt0605 and 
wpt1370 were also consistently associated with flag leaf 
area.

Significant MTA were also obtained for drought tol-
erance-related traits and vegetation indices. Regions 
of chromosome 4AL, 7A and 7BL comprised QTL for 
drought susceptibility index. Leaf senescence QTL were 
found in three regions of chromosome 6B (36.1, 50.6 and 
84.6 cM) and another five unmapped markers also showed 

associations with leaf senescence. Regions of chromo-
somes 1AL, 1BS, 2AS and 6BL harbored QTL for NDVI, 
and unmapped marker wpt0694 was also associated with 
NDVI in two environments.

Some of the MTA were significant at false discovery 
rate (FDR =  0.05) after correcting for multiple compari-
sons. These significant MTA at FDR = 0.05 were obtained 
for spikelet number per spike on chromosome 2BS, plant 
height on chromosome 6AS, grain filling duration on chro-
mosome 3BS and green leaf area on chromosome 1BL. 
Associations of unmapped markers with flag leaf width 

Table 3   Summary of marker–trait associations detected for agronomic traits and drought-related indices detected in five environments and com-
bined across environments

BM biomass, DM days to maturity, DH days to heading, DSI_KN drought susceptibility index calculated from kernel number, DSI_YLD drought 
susceptibility index calculated from grain yield, GA leaf green area, GFD grain filling duration, HI harvest index, SKH hardness index, KN grain 
number, KNL kernel number per spikelet, KNS kernel number per spike, KWS kernel weight per spike, LA leaf area, LL flag leaf length, LW flag 
leaf width, LS leaf senescence, NDVI normalized difference vegetation index, PHT plant height, SKD single-kernel diameter, SKW single-kernel 
weight, SL spike length, SN spikes number per meter square, SPN spikelet number, TKW thousand-kernel weight, TW test weight, YLD grain 
yield
a E nvironment at which MTA detected for each trait. GRW10, Greeley irrigated 2010; GRW11, Greeley Irrigated 2011; GRD11, Greeley rain-
fed 2011; MLKW11, Melkassa non-stressed 2011; MLKD11, Melkassa stressed 2011; Combined, combined data across environments
b  Phenotypic variation explained by markers without cross-validation

Trait Environmenta R2 (%)b

GRW10 GRW11 GRD11 MLKW11 MLKD11 Combined Total

BM 1 1 4 6 4.1–5.4

DH 4 3 3 3 3 4 20 2.2–5.4

DM 1 1 2 1 1 6 3.3–4.2

DSI_KN 2 4.2–4.7

DSI_YLD 1 4.2

GA 8 7 8 9 32 2.5–4.0

GFD 9 3 2 3 2 4 23 3.1–6.3

HI 5 1 5 4 2 17 3.0–5.1

SKH 23 30 21 5 34 113 2.8–4.1

KN 1 4 2 1 3 4 15 2.8–5.0

KNL 1 4 5 3.5–4.4

KNS 3 2 5 3.9–4.4

KWS 5 1 5 11 2.3–4.4

LA 6 3 6 3 7 25 1.9–3.8

LL 8 5 4 5 6 11 39 2.6–5.3

LW 3 1 2 1 6 2 15 3.2–5.2

LS 1 2 1 4 4.4.–4.5

NDVI 2 2 1 5 10 2.0–3.6

PHT 7 5 3 8 9 32 2.2–5.3

SKD 6 8 9 15 38 2.0–4.2

SKW 8 8 6 16 38 1.8–4.3

SL 1 4 3 8 2.0–2.3

SN 4 1 6 7 18 3.0–8.2

SPN 4 1 5 3.7–6.9

TKW 1 5 3 3 4 5 21 2.1–5.2

TW 6 8 15 15 44 2.2–4.8

YLD 3 3 4 2 3 15 2.8–5.2
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(wpt730263), spike number (wpt666595 and wpt667101) 
and drought susceptibility index (wpt0419) were also 
significant at FDR  =  0.05 (Table  4). None of the MTA 
obtained for the remaining traits survived the FDR adjust-
ment for multiple testing. At a relaxed FDR of 0.25, how-
ever, MTAs were identified for test weight, biomass, leaf 
green area, harvest index, leaf length, leaf width, single-
kernel diameter, kernel hardness, flag leaf area, kernel 
per spikelet and kernel number-based drought suscepti-
bility index (data not shown). The non-cross-validated 
proportion of phenotypic variances explained by markers 
significant at FDR = 0.05 were larger than the cross-val-
idated proportions of phenotypic variances in most cases 
(Table 4).

Multi-trait MTAs were detected in many chromosome 
regions. Their chromosome positions are shown with 
other trait-specific QTL in Fig.  5. Clusters of QTL were 
detected for kernel size-related traits on chromosomes 
1BL, 4AL and 7DL. Kernel quality traits (SKH and TW) 
had QTL in common with one or more kernel size-related 
traits on chromosomes 1D, 2DL, 3BS, 3D, 4AL, 5B and 
7AS. Markers near the centromeric region of chromosome 
5B (67.7–76.4 cM) were associated with yield, spike num-
ber per square meter, harvest index, biomass, plant height, 
thousand-kernel weight and test weight. A region of chro-
mosome 1AL was associated with both harvest index and 
NDVI, and QTL for green leaf area was detected close to 
the region of harvest index on chromosome 5AL. The QTL 
on 1BL for leaf green area was in the same region with a 
QTL detected for SKD, while green leaf area QTL on 
3BL was close to the QTL region for TKW, TW and GFD. 
Similarly, yield and harvest index had QTL in common on 

chromosome 1BS. Flag leaf area and flag leaf length had 
QTL in common on chromosomes 3BL and 5BL.

Multi-trait QTL were also detected among drought tol-
erance-related traits and vegetation indices. Marker–trait 
associations were obtained on chromosome 6BL for NDVI, 
leaf senescence and leaf green area index. However, only 
MTA for leaf senescence and leaf green area index were 
roughly in the same region (within 3  cM). Among QTL 
detected for drought susceptibility index, QTL on chromo-
some 4AL was in the same region with the QTL for single-
kernel diameter, single-kernel weight and thousand-kernel 
weight. Similarly, a QTL on 7A was detected in the same 
region with QTL detected for kernel number, kernel num-
ber per spikelet and kernel number per spike. Drought sus-
ceptibility QTL on 7BL was detected at a distance of 3.4 
and 3.9 cM away from plant height and spike number QTL, 
respectively.

Discussion

The spring wheat association mapping population panel 
(WAMII) used in this study was developed by CIMMYT 
with the intention of identifying QTL/genes underlying 
drought and heat tolerance-related traits. While the panel 
was assembled deliberately to restrict the range of phenol-
ogy which otherwise can mask detection of QTL (Reynolds 
et al. 2009; Pinto et al. 2010), accessions in the panel had 
wide differences in morphological characters and agro-
nomic traits. These allowed us to apply a genome-wide 
association mapping approach for studying the genetic 
basis of phenotypic variation for traits evaluated under a 

Table 4   Marker–trait associations significant at FDR = 0.05 for phenotypic traits measured in five environments

GA green leaf area, LW leaf width, PHT plant height, SPN spikelet number per spike, SN spike number, DSI_KN drought susceptibility index 
calculated from kernel number
a  Phenotypic variation explained by markers without cross-validation
b  Phenotypic variation explained by markers after cross-validation
c  False discovery rate P value

Trait Environment Marker Chromosome Position (cM) R2 (%)a R2 (%)b FDR P valuec

GA Combined wPt4532 1BL 88.3 5.6 14.5 0.0097

GA Combined wPt0944 Unmapped 4.9 14.0 0.0206

LW MLKD11 wPt730263 Unmapped 9.0 7.3 0.9 0.014

PHT Combined wPt729839 6AS 45.4 5.3 21.8 0.0071

SPN MLKW11 wPt8492 2BS 65.7 7.0 6.1 0.0058

SN GRW10 wPt666595 Unmapped 8.2 2.4 0.0054

SN GRW10 wPt667101 Unmapped 6.6 0.5 0.0260

GFD GRW10 tPt9267 3BS 24.6 6.3 7.4 0.0317

GFD GRW10 wPt5836 3BS 39.1 6.0 3.4 0.0317

GFD GRW10 wPt798970 3BS 25.1 5.6 1.7 0.0353

DSI_KN Melkassa wPt0419 Unmapped 6.0 1.1 0.0226
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Fig. 5   Chromosomal regions of 
significant marker–trait associa-
tions identified for phenotypic 
traits measured in this study. 
The DArT marker positions are 
provided in Online Resource 4
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wide range of environmental factors. The accessions have 
been exposed to water stress (as low as 192  mm for the 
entire growing season under rain-fed conditions at Greeley 
in 2011) and heat stress (maximum temperature >30 °C for 
a majority of the days after heading throughout the grain 
filling period at Greeley). For wheat anthesis and grain 
filling, the optimum temperature ranges from 12 to 22 °C 
(Farooq et al. 2011). Temperatures above 30 °C during flo-
ret formation in wheat may lead to complete sterility (Saini 
and Aspinall 1982).

Population structure can lead to false associations 
between markers and traits if not taken into account dur-
ing association analysis (Zhao et al. 2007). A model-based 
approach was used to detect subgroups for 287 spring 
wheat lines in the association mapping panel, and we 
were able to detect seven subpopulations. In the molecular 
variance analysis of our study, the significant (P < 0.001) 
population differentiation (Fst ranged from 0.14 to 0.73) 
for the seven groups reaffirms the presence of population 
structure. Genetic distance-based cluster analysis also pro-
vided evidence for the presence of subpopulations despite 
the lack of similarity between its clusters and the subgroups 
of model-based analysis in STRUCTURE. The majority 
of the variation was explained by within-population varia-
tion (78.5 %), with among-population variation accounting 
for 21.5 % of the variation. The higher within-population 
variation demonstrates the impact of selection in maintain-
ing allele diversity in the breeding populations. The mag-
nitude of among-population variation in this study is com-
parable to variation explained due to differences between 
European and Asian wheat germplasm (Hao et  al. 2010), 
and even higher than the variation explained due to differ-
ences among geographical groups of wheat populations in 
Europe (Roussel et  al. 2005). Chao et  al. (2010) reported 
a higher among-subpopulation genetic variation in spring 
wheat (17.2  %) than in winter wheat (10.5  %) from the 
United States and CIMMYT breeding programs. Although 
lines from CIMMYT were used in the present study, the 
subpopulations are more genetically differentiated than the 
US spring wheat subpopulations in the study by Chao et al. 
(2010). In our mapping panel, a substantial number of lines 
shared one or more parents. Therefore, some of the groups 
were dominated by lines that trace back to a common par-
ent (data not shown). Because a few elite lines are routinely 
used as parents of crosses in many breeding programs, this 
can be expected to lead to some sort of population structure 
as observed in the current study.

Linkage disequilibrium information is critical in asso-
ciation studies because LD values can be affected by many 
factors such as population type, chromosome region and 
mating system. The number of markers needed for asso-
ciation studies depends on the extent of LD under consid-
eration. In the current population, chromosomes showed 

large differences in the proportion of marker pairs in sig-
nificant LD (P < 0.01) from the maximum 62 % for chro-
mosome 4A to the minimum 20  % for chromosome 5A. 
Although chromosome 4A contained more markers in LD 
at P < 0.01, markers on chromosome 3D are more physi-
cally linked (r2  =  0.264). However, the proportions of 
marker pairs at r2 = 0.2 and r2 = 0.264 are comparable for 
all chromosomes implying the importance of choosing an 
appropriate r2 value as a threshold in addition to statistical 
significance. In the current analysis, r2 = 0.2 was used only 
for chromosomes with weak LD which do not allow evalu-
ating LD decay rate at threshold level of physically linked 
markers (r2 = 0.264).

The magnitude of LD across a genome or chromosome 
is a function of nucleotide or linkage distance. LD decay 
rate was determined both at the genome and individual 
chromosome level. LD decayed within 2  cM for both A 
and B genomes, while it extended up to ~6.8 cM of genetic 
distance for the D genome. Chao et  al. (2010) reported a 
similar finding using 394 genetically mapped SNP mark-
ers on 478 spring and winter wheat cultivars. The reason 
for more extended LD in the D-genome than in the A- and 
B-genomes could be the introduction of new haplotypes, 
which can increase the extent of LD from Aegilops tauschii 
(D-genome donor) into the D-genome of hexaploid wheat 
germplasm through synthetic wheats. Many lines with syn-
thetic background have been included during assembly of 
this association mapping panel (Lopes et al. 2012). Another 
potential explanation for extended LD is the genetic bottle-
neck that occurred on the D-genome as a result of hybridi-
zation of tetraploid wheat with Ae. tauschii to form hexa-
ploid wheat (Warburton et al. 2006; Chao et al. 2010).

The LD decay rate was also determined for subpopu-
lations. Generally, LD extended over longer nucleotide 
or genetic distances (6–9  cM) for subpopulations than 
the whole panel, which is expected because grouping of 
genetically similar genotypes reduces within subpopulation 
genetic diversity; consequently, large blocks of a chromo-
some region could be in LD. We were able to fit LOESS 
curves only for four out of the seven model-based subpopu-
lations; three of them had similar LD decay rates (within 
8–9  cM), and for one group LD decayed relatively faster 
(within 6 cM) at r2 =  0.2. When all subpopulations were 
considered together, on average LD decayed below the 
base line r2 = 0.2 at ~3.4 cM which is about 50 % of the 
genetic distance within subpopulations. In other words, this 
translated to the doubling of genetic distance over which 
LD extended just by grouping similar genotypes together 
or using closely related genotypes for assessing LD level.

The effect of subpopulations on phenotypic traits was 
assessed with multiple regression analysis. Among the 
traits confounded by population structure, plant height, 
kernel traits (single-kernel weight, thousand-kernel weight 
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and single-kernel diameter) and NDVI showed the greatest 
percentage of phenotypic variation explained by popula-
tion structure. Interestingly grain yield, kernel number per 
square meter, spike number per square meter, harvest index 
and phenological traits (DH, DM and GFD) were among 
the group of traits least affected by subpopulations. Except 
for TKW and HI, these results are in agreement with Dodig 
et al. (2012) who reported large effects of population struc-
ture in winter wheat on stem-related traits (stem height, 
peduncle length and peduncle extrusion); a moderate influ-
ence on sterile spikelet per spike and biomass per plant; 
and a low effect on yield and yield components (KN, TKW 
and SN). The greatest effect of population structure on ker-
nel-size related traits in our panel may be due to intensive 
selection for kernel size in CIMMYT’s breeding program 
(Ravi Singh, CIMMYT, personal comm.). Elite lines are 
most likely larger in kernel size than the remaining lines 
included in the panel for the purpose of maintaining genetic 
diversity during assembly of the mapping panel. The low 
effect of population structure on heading date indicates the 
minimum confounding effect of phenology on population 
structure, unlike plant height and kernel size.

Although grain yield QTL were detected on all wheat 
chromosomes in previous studies, relatively consistent 
MTA in our study were detected on chromosomes 1BS, 
2DS, 5B and 7B. Broad comparison of MTA results from 
the current study with previous studies were made using 
chromosome arms because of differences in marker type 
and marker positions on different genetic maps. The DArT 
marker wpt6531 on the short arm of chromosome 2DS, 
which was associated with yield in the current study, is 
about 8  cM away from the wpt4144 marker, which was 
associated with yield in the Crossa et  al. (2007) study. 
Kumar et al. (2007) detected QTL for yield in this region 
linked to SSR marker gwm261 which is 14.4 cM distal to 
Ppd-D1 and 0.6  cM distal to the height-reducing semi-
dwarfing Rht8 gene (Korzun et al. 1998; Ellis et al. 2007). 
Dodig et al. (2012) also detected QTL on chromosome 2DS 
(near gwm484) that explained about 22 % of the phenotypic 
variation for grain yield. Therefore, the stable and highly 
significant grain yield MTA on 2DS in the current study is 
probably due to a grain yield QTL in proximity to the Ppd-
D1 locus, which is known for its influence on wheat yield 
through optimization of flowering time (Worland 1996). 
Significant MTA for yield were detected on the short arm 
of chromosome 1B in the Crossa et al. (2007) study. Quar-
rie et  al. (2005) found major QTL which explained up to 
35 % of the phenotypic variation and were expressed in 11 
out of 24 trials on 7BL.

In the current study, wpt8211 on chromosome 7B 
(69.6  cM) was associated with yield in three environ-
ments. The marker wpt3457 on chromosome 5B (73  cM) 
was associated with yield both under irrigated and rain-fed 

conditions, and another marker (wpt6135), which was 
physically in LD and 3.4  cM away from wpt3457, was 
strongly associated with yield under irrigated conditions. 
Moreover, many other markers consistently associated 
with traits such as thousand-kernel weight, final biomass, 
harvest index, plant height and flag leaf length also reside 
on either side of the yield QTL position on 5B, indicating 
the importance of this region in influencing yield and yield 
components. This region may explain a portion of the gen-
otypic correlations of yield with yield component traits.

In previous studies, yield QTL have been detected on 
both long and short arms of chromosome 5B ( Huang et al. 
2003; Marza et  al. 2006; Crossa et  al. 2007; Neumann 
et al. 2011) and some of those QTL may coincide with the 
QTL detected here on chromosome 5B. However, to our 
knowledge, there are no reports on the presence of multi-
trait QTL near the centromeric region of chromosome 5B. 
In fact, chromosome 5B comprised the highest number of 
MTA in this study. Kumar et al. (2007) reported multi-trait 
QTL for yield and yield components on chromosomes 2DS 
and 4AL. However, no multi-trait regions were detected 
on 2DS for the yield component traits in this study, but a 
region of chromosome 4AL was identified as a multi-trait 
region for kernel size and quality traits. Similar results 
were observed by Lopes et al. (2013).

Grain yield and harvest index shared an associa-
tion region on chromosome 1BS, implying that there is a 
genetic basis for the high and consistent genotypic correla-
tion observed between grain yield and harvest index (data 
not shown). In addition, NDVI has QTL in common only 
with harvest index on chromosome 1AL of all yield com-
ponent traits, while green leaf area shared QTL with har-
vest index on chromosomes 5A (42.3 cM) and with single-
kernel diameter on chromosome 3B (56.5 cM). The benefits 
of assessing yielding ability of wheat with these vegetation 
indices may be dictated by the expression of genes in the 
chromosome regions that harvest index and single-kernel 
diameter shared with the indices.

Trait-specific stable MTA were detected for main yield 
component traits such as kernel number per square meter, 
harvest index and thousand-kernel weight. Unlike harvest 
index and thousand-kernel weight, only one marker on 
chromosome 7AS showed consistency across environments 
for kernel number. Among environment-specific MTA 
for kernel number, the unmapped marker wpt0866 had 
sequence similarity with 1, 3-beta glucan synthase (Mar-
one et al. 2012). Similarly, all MTA of final biomass, ker-
nel number per spikelet and kernel number per spike were 
environment specific, showing the presence of higher geno-
type by environment interaction for these yield component 
traits than yield itself. Among yield and yield component 
traits, however, very strong (FDR  =  0.05) MTAs were 
obtained for spikelet number per spike on chromosome 
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2BS (wpt8492), and for spike number per square meter for 
two unmapped markers wpt666595 and wpt667101. None 
of these MTAs are in agreement with previously detected 
QTL in bi-parental populations with the exception of MTA 
noted for spikelet number on chromosomes 2B and 7B by 
Neumann et al. (2011) which may be comparable with our 
current findings.

Stacking QTL that control traits of interest from differ-
ent chromosome regions into one background is a chal-
lenging and time consuming task in plant breeding. Using 
multi-trait markers in marker-assisted selection may 
increase QTL pyramiding efficiency. With the exception of 
chromosomes 4D, 5D and 6D, two or more traits shared the 
same region or resided within 5  cM on all chromosomes. 
Kernel size-related traits, single-kernel weight, single-ker-
nel diameter and thousand-kernel weight had QTL in com-
mon on chromosomes 1BL, 4AL (SKW, SKD and TKW) 
and 7DL (SKW and SKD). Test weight also shared the 
same regions with one or more kernel size-related traits on 
chromosomes 1B, 2DL, 4BL, 7BL and 7DL. These traits 
could be under the same genetic control and markers in 
those multi-trait regions could be used in the future for 
improvement of kernel size-related traits through marker-
assisted selection. Similarly, clusters of QTL for flag leaf 
characters (LA, LL and LW) were found on chromosomes 
3BL and 5BL. Moreover, there is a pattern of co-localiza-
tion of QTL for leaf characters and kernel size-related traits 
TKW or SKW. This may be related to the translocation of 
flag leaf photosynthetic products to growing kernels during 
the grain filling period (Lupton 1966).

Many chromosome regions were associated with 
drought tolerance-related traits such as drought susceptibil-
ity index, NDVI, leaf senescence, green leaf area and flag 
leaf characters. Overall, the most important chromosomes 
that comprised QTL for drought tolerance in this study are 
chromosomes 1B, 4AL, 6B, 5B, 7A and 7B. The major 
drought tolerance QTL detected in the past correspond to 
chromosome regions associated with key drought toler-
ance-related traits in this study (Alexander et  al. 2012) at 
least at chromosome arms level.

Although there was a wide range in mean phenotypic 
values for plant height, the major plant height reducing 
genes Rht-D1b and Rht-B1b were not detected in this study. 
However, we detected plant height MTA in the regions 
of previously reported QTL on chromosomes 3BL (Mac-
caferri et  al. 2011), 5B (Cadalen et  al. 1997; McCartney 
et al. 2005; McIntyre et al. 2010), 6AS (Spiel Meyer et al. 
2005) and 7BL (McCartney et al. 2005). Similarly, regions 
of group 5 chromosomes where VRN-1 genes reside were 
not associated with heading date in this panel. Nonethe-
less, in agreement with the result in this study, QTL that 
affect flowering time in wheat have been reported on 

chromosomes 2B, 3AL, 3B and 7DS (Borner et  al. 2002; 
Marza et al. 2006; Cuthbert et al. 2008; Wang et al. 2009).

Photoperiod sensitivity genes, which have been mapped 
on the short arms of homeologous group 2 chromosomes, 
were not detected for heading date. However, the QTL 
detected on 3AL may indicate variation in an earliness per 
se gene, which was mapped on chromosome 3AL (Borner 
et al. 2002).

In conclusion, we have shown that LD decay varied 
both at the genome and chromosome levels. Genome-wide 
association mapping effectively detected both stable and 
environment-specific QTL for yield, yield components, 
and drought-related traits. Multi-trait chromosome regions 
have been detected and particularly the region on chromo-
some 5B associated with yield and yield component traits 
may be useful in MAS following proper validation. In the 
context of drought tolerance, QTL regions that control both 
drought tolerance-related traits and yield component traits 
were detected on chromosomes 1AL (NDVI and harvest 
index), 5AL (green leaf area and harvest index) and 3B 
(green leaf area and single-kernel diameter), implying the 
possibility of using vegetation indices for indirect assess-
ment for certain yield component traits.
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